23
1

Sketch-based Randomized Algorithms for Dynamic Graph Regression

Abstract

A well-known problem in data science and machine learning is {\em linear regression}, which is recently extended to dynamic graphs. Existing exact algorithms for updating the solution of dynamic graph regression problem require at least a linear time (in terms of nn: the size of the graph). However, this time complexity might be intractable in practice. In the current paper, we utilize {\em subsampled randomized Hadamard transform} and \textsf{CountSketch} to propose the first randomized algorithms. Suppose that we are given an n×mn\times m matrix embedding MM of the graph, where mnm \ll n. Let rr be the number of samples required for a guaranteed approximation error, which is a sublinear function of nn. Our first algorithm reduces time complexity of pre-processing to O(n(m+1)+2n(m+1)log2(r+1)+rm2)O(n(m + 1) + 2n(m + 1) \log_2(r + 1) + rm^2). Then after an edge insertion or an edge deletion, it updates the approximate solution in O(rm)O(rm) time. Our second algorithm reduces time complexity of pre-processing to O(nnz(M)log(n/ϵ)+m3log2m+m2log(1/ϵ))O \left( nnz(M) \log(n/\epsilon) + m^3 \log^2 m + m^2 \log(1/\epsilon) \right), where nnz(M)nnz(M) is the number of nonzero elements of MM. Then after an edge insertion or an edge deletion or a node insertion or a node deletion, it updates the approximate solution in O(qm)O(qm) time, with q=O(m2/ϵ2)q=O(m^2/\epsilon^2).

View on arXiv
Comments on this paper