ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11722
30
39

A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation

28 May 2019
M. Kusumoto
Takuya Inoue
G. Watanabe
Takuya Akiba
Masanori Koyama
ArXiv (abs)PDFHTML
Abstract

Recomputation algorithms collectively refer to a family of methods that aims to reduce the memory consumption of the backpropagation by selectively discarding the intermediate results of the forward propagation and recomputing the discarded results as needed. In this paper, we will propose a novel and efficient recomputation method that can be applied to a wider range of neural nets than previous methods. We use the language of graph theory to formalize the general recomputation problem of minimizing the computational overhead under a fixed memory budget constraint, and provide a dynamic programming solution to the problem. Our method can reduce the peak memory consumption on various benchmark networks by 36%~81%, which outperforms the reduction achieved by other methods.

View on arXiv
Comments on this paper