ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11017
24
45

Learning to Optimize with Unsupervised Learning: Training Deep Neural Networks for URLLC

27 May 2019
Chengjian Sun
Chenyang Yang
ArXivPDFHTML
Abstract

Learning the optimized solution as a function of environmental parameters is effective in solving numerical optimization in real time for time-sensitive applications. Existing works of learning to optimize train deep neural networks (DNN) with labels, and the learnt solution are inaccurate, which cannot be employed to ensure the stringent quality of service. In this paper, we propose a framework to learn the latent function with unsupervised deep learning, where the property that the optimal solution should satisfy is used as the "supervision signal" implicitly. The framework is applicable to both functional and variable optimization problems with constraints. We take a variable optimization problem in ultra-reliable and low-latency communications as an example, which demonstrates that the ultra-high reliability can be supported by the DNN without supervision labels.

View on arXiv
Comments on this paper