ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10029
6
27

Power up! Robust Graph Convolutional Network via Graph Powering

24 May 2019
Ming Jin
Heng Chang
Wenwu Zhu
Somayeh Sojoudi
    AAML
    GNN
ArXivPDFHTML
Abstract

Graph convolutional networks (GCNs) are powerful tools for graph-structured data. However, they have been recently shown to be vulnerable to topological attacks. To enhance adversarial robustness, we go beyond spectral graph theory to robust graph theory. By challenging the classical graph Laplacian, we propose a new convolution operator that is provably robust in the spectral domain and is incorporated in the GCN architecture to improve expressivity and interpretability. By extending the original graph to a sequence of graphs, we also propose a robust training paradigm that encourages transferability across graphs that span a range of spatial and spectral characteristics. The proposed approaches are demonstrated in extensive experiments to simultaneously improve performance in both benign and adversarial situations.

View on arXiv
Comments on this paper