Combine PPO with NES to Improve Exploration

Abstract
We introduce two approaches for combining neural evolution strategy (NES) and proximal policy optimization (PPO): parameter transfer and parameter space noise. Parameter transfer is a PPO agent with parameters transferred from a NES agent. Parameter space noise is to directly add noise to the PPO agent`s parameters. We demonstrate that PPO could benefit from both methods through experimental comparison on discrete action environments as well as continuous control tasks
View on arXivComments on this paper