ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.08099
6
8

Decoding the Rejuvenating Effects of Mechanical Loading on Skeletal Maturation using in Vivo Imaging and Deep Learning

20 May 2019
Pouyan Asgharzadeh
Oliver Röhrle
B. Willie
A. Birkhold
    AI4CE
ArXivPDFHTML
Abstract

Throughout the process of aging, deterioration of bone macro- and micro-architecture, as well as material decomposition result in a loss of strength and therefore in an increased likelihood of fractures. To date, precise contributions of age-related changes in bone (re)modeling and (de)mineralization dynamics and its effect on the loss of functional integrity are not completely understood. Here, we present an image-based deep learning approach to quantitatively describe the dynamic effects of short-term aging and adaptive response to treatment in proximal mouse tibia and fibula. Our approach allowed us to perform an end-to-end age prediction based on μ\muμCT images to determine the dynamic biological process of tissue maturation during a two week period, therefore permitting a short-term bone aging prediction with 95%95\%95% accuracy. In a second application, our radiomics analysis reveals that two weeks of in vivo mechanical loading are associated with an underlying rejuvenating effect of 5 days. Additionally, by quantitatively analyzing the learning process, we could, for the first time, identify the localization of the age-relevant encoded information and demonstrate 89%89\%89% load-induced similarity of these locations in the loaded tibia with younger bones. These data suggest that our method enables identifying a general prognostic phenotype of a certain bone age as well as a temporal and localized loading-treatment effect on this apparent bone age. Future translational applications of this method may provide an improved decision-support method for osteoporosis treatment at low cost.

View on arXiv
Comments on this paper