ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.06584
11
13

Adaptive estimation in the linear random coefficients model when regressors have limited variation

16 May 2019
C. Gaillac
Eric Gautier
ArXivPDFHTML
Abstract

We consider a linear model where the coefficients - intercept and slopes - are random with a law in a nonparametric class and independent from the regressors. Identification often requires the regressors to have a support which is the whole space. This is hardly ever the case in practice. Alternatively, the coefficients can have a compact support but this is not compatible with unbounded error terms as usual in regression models. In this paper, the regressors can have a support which is a proper subset but the slopes (not the intercept) do not have heavy-tails. Lower bounds on the supremum risk for the estimation of the joint density of the random coefficients density are obtained for a wide range of smoothness, where some allow for polynomial and nearly parametric rates of convergence. We present a minimax optimal estimator, a data-driven rule for adaptive estimation, and made available a R package.

View on arXiv
Comments on this paper