ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.05092
19
15

Joint Demosaicking and Denoising by Fine-Tuning of Bursts of Raw Images

13 May 2019
T. Ehret
Axel Davy
Pablo Arias
Gabriele Facciolo
ArXivPDFHTML
Abstract

Demosaicking and denoising are the first steps of any camera image processing pipeline and are key for obtaining high quality RGB images. A promising current research trend aims at solving these two problems jointly using convolutional neural networks. Due to the unavailability of ground truth data these networks cannot be currently trained using real RAW images. Instead, they resort to simulated data. In this paper we present a method to learn demosaicking directly from mosaicked images, without requiring ground truth RGB data. We apply this to learn joint demosaicking and denoising only from RAW images, thus enabling the use of real data. In addition we show that for this application fine-tuning a network to a specific burst improves the quality of restoration for both demosaicking and denoising.

View on arXiv
Comments on this paper