22
158

End-to-End Wireframe Parsing

Abstract

We present a conceptually simple yet effective algorithm to detect wireframes in a given image. Compared to the previous methods which first predict an intermediate heat map and then extract straight lines with heuristic algorithms, our method is end-to-end trainable and can directly output a vectorized wireframe that contains semantically meaningful and geometrically salient junctions and lines. To better understand the quality of the outputs, we propose a new metric for wireframe evaluation that penalizes overlapped line segments and incorrect line connectivities. We conduct extensive experiments and show that our method significantly outperforms the previous state-of-the-art wireframe and line extraction algorithms. We hope our simple approach can be served as a baseline for future wireframe parsing studies. Code has been made publicly available at https://github.com/zhou13/lcnn.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.