ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03051
12
2

Bayesian Optimization for Polynomial Time Probabilistically Complete STL Trajectory Synthesis

8 May 2019
Vince Kurtz
Hai Lin
ArXivPDFHTML
Abstract

In recent years, Signal Temporal Logic (STL) has gained traction as a practical and expressive means of encoding control objectives for robotic and cyber-physical systems. The state-of-the-art in STL trajectory synthesis is to formulate the problem as a Mixed Integer Linear Program (MILP). The MILP approach is sound and complete for bounded specifications, but such strong correctness guarantees come at the price of exponential complexity in the number of predicates and the time bound of the specification. In this work, we propose an alternative synthesis paradigm that relies on Bayesian optimization rather than mixed integer programming. This relaxes the completeness guarantee to probabilistic completeness, but is significantly more efficient: our approach scales polynomially in the STL time-bound and linearly in the number of predicates. We prove that our approach is sound and probabilistically complete, and demonstrate its scalability with a nontrivial example.

View on arXiv
Comments on this paper