ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.02954
21
85

Ultra Low-Power and Real-time ECG Classification Based on STDP and R-STDP Neural Networks for Wearable Devices

8 May 2019
Alireza Amirshahi
Matin Hashemi
ArXivPDFHTML
Abstract

This paper presents a novel ECG classification algorithm for real-time cardiac monitoring on ultra low-power wearable devices. The proposed solution is based on spiking neural networks which are the third generation of neural networks. In specific, we employ spike-timing dependent plasticity (STDP), and reward-modulated STDP (R-STDP), in which the model weights are trained according to the timings of spike signals, and reward or punishment signals. Experiments show that the proposed solution is suitable for real-time operation, achieves comparable accuracy with respect to previous methods, and more importantly, its energy consumption is significantly smaller than previous neural network based solutions.

View on arXiv
Comments on this paper