ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.02649
26
21

High Frequency Residual Learning for Multi-Scale Image Classification

7 May 2019
Bowen Cheng
Rong Xiao
Jianfeng Wang
Thomas Huang
Lei Zhang
ArXivPDFHTML
Abstract

We present a novel high frequency residual learning framework, which leads to a highly efficient multi-scale network (MSNet) architecture for mobile and embedded vision problems. The architecture utilizes two networks: a low resolution network to efficiently approximate low frequency components and a high resolution network to learn high frequency residuals by reusing the upsampled low resolution features. With a classifier calibration module, MSNet can dynamically allocate computation resources during inference to achieve a better speed and accuracy trade-off. We evaluate our methods on the challenging ImageNet-1k dataset and observe consistent improvements over different base networks. On ResNet-18 and MobileNet with alpha=1.0, MSNet gains 1.5% accuracy over both architectures without increasing computations. On the more efficient MobileNet with alpha=0.25, our method gains 3.8% accuracy with the same amount of computations.

View on arXiv
Comments on this paper