ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.02320
19
2

Spatially Constrained GAN for Face and Fashion Synthesis

7 May 2019
Songyao Jiang
Hongfu Liu
Yue Wu
Y. Fu
ArXivPDFHTML
Abstract

Image generation has raised tremendous attention in both academic and industrial areas, especially for the conditional and target-oriented image generation, such as criminal portrait and fashion design. Although the current studies have achieved preliminary results along this direction, they always focus on class labels as the condition where spatial contents are randomly generated from latent vectors. Edge details are usually blurred since spatial information is difficult to preserve. In light of this, we propose a novel Spatially Constrained Generative Adversarial Network (SCGAN), which decouples the spatial constraints from the latent vector and makes these constraints feasible as additional controllable signals. To enhance the spatial controllability, a generator network is specially designed to take a semantic segmentation, a latent vector and an attribute-level label as inputs step by step. Besides, a segmentor network is constructed to impose spatial constraints on the generator. Experimentally, we provide both visual and quantitative results on CelebA and DeepFashion datasets, and demonstrate that the proposed SCGAN is very effective in controlling the spatial contents as well as generating high-quality images.

View on arXiv
Comments on this paper