ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.01758
19
47

Investigating the Successes and Failures of BERT for Passage Re-Ranking

5 May 2019
Harshith Padigela
Hamed Zamani
W. Bruce Croft
ArXivPDFHTML
Abstract

The bidirectional encoder representations from transformers (BERT) model has recently advanced the state-of-the-art in passage re-ranking. In this paper, we analyze the results produced by a fine-tuned BERT model to better understand the reasons behind such substantial improvements. To this aim, we focus on the MS MARCO passage re-ranking dataset and provide potential reasons for the successes and failures of BERT for retrieval. In more detail, we empirically study a set of hypotheses and provide additional analysis to explain the successful performance of BERT.

View on arXiv
Comments on this paper