ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.01391
11
9

Deep Tensor Factorization for Spatially-Aware Scene Decomposition

3 May 2019
Jonah Casebeer
Michael Colomb
Paris Smaragdis
    ViT
ArXivPDFHTML
Abstract

We propose a completely unsupervised method to understand audio scenes observed with random microphone arrangements by decomposing the scene into its constituent sources and their relative presence in each microphone. To this end, we formulate a neural network architecture that can be interpreted as a nonnegative tensor factorization of a multi-channel audio recording. By clustering on the learned network parameters corresponding to channel content, we can learn sources' individual spectral dictionaries and their activation patterns over time. Our method allows us to leverage deep learning advances like end-to-end training, while also allowing stochastic minibatch training so that we can feasibly decompose realistic audio scenes that are intractable to decompose using standard methods. This neural network architecture is easily extensible to other kinds of tensor factorizations.

View on arXiv
Comments on this paper