ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.00741
12
8

From Video Game to Real Robot: The Transfer between Action Spaces

2 May 2019
Janne Karttunen
Anssi Kanervisto
Ville Kyrki
Ville Hautamaki
ArXivPDFHTML
Abstract

Deep reinforcement learning has proven to be successful for learning tasks in simulated environments, but applying same techniques for robots in real-world domain is more challenging, as they require hours of training. To address this, transfer learning can be used to train the policy first in a simulated environment and then transfer it to physical agent. As the simulation never matches reality perfectly, the physics, visuals and action spaces by necessity differ between these environments to some degree. In this work, we study how general video games can be directly used instead of fine-tuned simulations for the sim-to-real transfer. Especially, we study how the agent can learn the new action space autonomously, when the game actions do not match the robot actions. Our results show that the different action space can be learned by re-training only part of neural network and we obtain above 90% mean success rate in simulation and robot experiments.

View on arXiv
Comments on this paper