ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.00519
35
12

Optimal Multi-view Correction of Local Affine Frames

1 May 2019
Ivan Eichhardt
Dániel Baráth
ArXiv (abs)PDFHTML
Abstract

The technique requires the epipolar geometry to be pre-estimated between each image pair. It exploits the constraints which the camera movement implies, in order to apply a closed-form correction to the parameters of the input affinities. Also, it is shown that the rotations and scales obtained by partially affine-covariant detectors, e.g., AKAZE or SIFT, can be completed to be full affine frames by the proposed algorithm. It is validated both in synthetic experiments and on publicly available real-world datasets that the method always improves the output of the evaluated affine-covariant feature detectors. As a by-product, these detectors are compared and the ones obtaining the most accurate affine frames are reported. For demonstrating the applicability, we show that the proposed technique as a pre-processing step improves the accuracy of pose estimation for a camera rig, surface normal and homography estimation.

View on arXiv
Comments on this paper