ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.13353
11
40

Object Contour and Edge Detection with RefineContourNet

30 April 2019
A. Kelm
V. S. Rao
U. Zölzer
    ObjD
ArXivPDFHTML
Abstract

A ResNet-based multi-path refinement CNN is used for object contour detection. For this task, we prioritise the effective utilization of the high-level abstraction capability of a ResNet, which leads to state-of-the-art results for edge detection. Keeping our focus in mind, we fuse the high, mid and low-level features in that specific order, which differs from many other approaches. It uses the tensor with the highest-levelled features as the starting point to combine it layer-by-layer with features of a lower abstraction level until it reaches the lowest level. We train this network on a modified PASCAL VOC 2012 dataset for object contour detection and evaluate on a refined PASCAL-val dataset reaching an excellent performance and an Optimal Dataset Scale (ODS) of 0.752. Furthermore, by fine-training on the BSDS500 dataset we reach state-of-the-art results for edge-detection with an ODS of 0.824.

View on arXiv
Comments on this paper