ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.12098
11
1

Enabling Open-World Specification Mining via Unsupervised Learning

27 April 2019
Jordan Henkel
Shuvendu K. Lahiri
B. Liblit
Thomas W. Reps
ArXivPDFHTML
Abstract

Many programming tasks require using both domain-specific code and well-established patterns (such as routines concerned with file IO). Together, several small patterns combine to create complex interactions. This compounding effect, mixed with domain-specific idiosyncrasies, creates a challenging environment for fully automatic specification inference. Mining specifications in this environment, without the aid of rule templates, user-directed feedback, or predefined API surfaces, is a major challenge. We call this challenge Open-World Specification Mining. In this paper, we present a framework for mining specifications and usage patterns in an Open-World setting. We design this framework to be miner-agnostic and instead focus on disentangling complex and noisy API interactions. To evaluate our framework, we introduce a benchmark of 71 clusters extracted from five open-source projects. Using this dataset, we show that interesting clusters can be recovered, in a fully automatic way, by leveraging unsupervised learning in the form of word embeddings. Once clusters have been recovered, the challenge of Open-World Specification Mining is simplified and any trace-based mining technique can be applied. In addition, we provide a comprehensive evaluation of three word-vector learners to showcase the value of sub-word information for embeddings learned in the software-engineering domain.

View on arXiv
Comments on this paper