ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.11968
16
3

Learning Semantic Vector Representations of Source Code via a Siamese Neural Network

26 April 2019
David Wehr
Halley Fede
Eleanor Pence
Bo Zhang
Guilherme Ferreira
John Walczyk
Joseph Hughes
    SSL
ArXiv (abs)PDFHTML
Abstract

The abundance of open-source code, coupled with the success of recent advances in deep learning for natural language processing, has given rise to a promising new application of machine learning to source code. In this work, we explore the use of a Siamese recurrent neural network model on Python source code to create vectors which capture the semantics of code. We evaluate the quality of embeddings by identifying which problem from a programming competition the code solves. Our model significantly outperforms a bag-of-tokens embedding, providing promising results for improving code embeddings that can be used in future software engineering tasks.

View on arXiv
Comments on this paper