ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.11949
8
30

Machine Learning Tips and Tricks for Power Line Communications

24 April 2019
Andrea M. Tonello
N. A. Letizia
Davide Righini
Francesco Marcuzzi
ArXivPDFHTML
Abstract

A great deal of attention has been recently given to Machine Learning (ML) techniques in many different application fields. This paper provides a vision of what ML can do in Power Line Communications (PLC). We firstly and briefly describe classical formulations of ML, and distinguish deterministic from statistical learning models with relevance to communications. We then discuss ML applications in PLC for each layer, namely, for characterization and modeling, for the development of physical layer algorithms, for media access control and networking. Finally, other applications of PLC that can benefit from the usage of ML, as grid diagnostics, are analyzed. Illustrative numerical examples are reported to serve the purpose of validating the ideas and motivate future research endeavors in this stimulating signal/data processing field.

View on arXiv
Comments on this paper