28
29

Unbiased Multilevel Monte Carlo: Stochastic Optimization, Steady-state Simulation, Quantiles, and Other Applications

Abstract

We present general principles for the design and analysis of unbiased Monte Carlo estimators in a wide range of settings. Our estimators posses finite work-normalized variance under mild regularity conditions. We apply our estimators to various settings of interest, including unbiased optimization in Sample Average Approximations, unbiased steady-state simulation of regenerative processes, quantile estimation and nested simulation problems.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.