ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.09856
26
75

Learning to Calibrate Straight Lines for Fisheye Image Rectification

22 April 2019
Zhucun Xue
Nan Xue
Gui-Song Xia
Weiming Shen
ArXivPDFHTML
Abstract

This paper presents a new deep-learning based method to simultaneously calibrate the intrinsic parameters of fisheye lens and rectify the distorted images. Assuming that the distorted lines generated by fisheye projection should be straight after rectification, we propose a novel deep neural network to impose explicit geometry constraints onto processes of the fisheye lens calibration and the distorted image rectification. In addition, considering the nonlinearity of distortion distribution in fisheye images, the proposed network fully exploits multi-scale perception to equalize the rectification effects on the whole image. To train and evaluate the proposed model, we also create a new largescale dataset labeled with corresponding distortion parameters and well-annotated distorted lines. Compared with the state-of-the-art methods, our model achieves the best published rectification quality and the most accurate estimation of distortion parameters on a large set of synthetic and real fisheye images.

View on arXiv
Comments on this paper