ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.09029
23
44

Deep Learning for Power System Security Assessment

31 March 2019
José-María Hidalgo-Arteaga
Fiodar Hancharou
Florian Thams
Spyros Chatzivasileiadis
ArXivPDFHTML
Abstract

Security assessment is among the most fundamental functions of power system operator. The sheer complexity of power systems exceeding a few buses, however, makes it an extremely computationally demanding task. The emergence of deep learning methods that are able to handle immense amounts of data, and infer valuable information appears as a promising alternative. This paper has two main contributions. First, inspired by the remarkable performance of convolutional neural networks for image processing, we represent for the first time power system snapshots as 2-dimensional images, thus taking advantage of the wide range of deep learning methods available for image processing. Second, we train deep neural networks on a large database for the NESTA 162-bus system to assess both N-1 security and small-signal stability. We find that our approach is over 255 times faster than a standard small-signal stability assessment, and it can correctly determine unsafe points with over 99% accuracy.

View on arXiv
Comments on this paper