ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.08910
11
26

Combating the Elsagate phenomenon: Deep learning architectures for disturbing cartoons

18 April 2019
Akari Ishikawa
Edson Bollis
Sandra Avila
ArXivPDFHTML
Abstract

Watching cartoons can be useful for children's intellectual, social and emotional development. However, the most popular video sharing platform today provides many videos with Elsagate content. Elsagate is a phenomenon that depicts childhood characters in disturbing circumstances (e.g., gore, toilet humor, drinking urine, stealing). Even with this threat easily available for children, there is no work in the literature addressing the problem. As the first to explore disturbing content in cartoons, we proceed from the most recent pornography detection literature applying deep convolutional neural networks combined with static and motion information of the video. Our solution is compatible with mobile platforms and achieved 92.6% of accuracy. Our goal is not only to introduce the first solution but also to bring up the discussion around Elsagate.

View on arXiv
Comments on this paper