ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.08462
25
20

Online Adaptation through Meta-Learning for Stereo Depth Estimation

17 April 2019
Zhenyu Zhang
Stéphane Lathuilière
Andrea Pilzer
N. Sebe
Elisa Ricci
Jian Yang
ArXivPDFHTML
Abstract

In this work, we tackle the problem of online adaptation for stereo depth estimation, that consists in continuously adapting a deep network to a target video recordedin an environment different from that of the source training set. To address this problem, we propose a novel Online Meta-Learning model with Adaption (OMLA). Our proposal is based on two main contributions. First, to reducethe domain-shift between source and target feature distributions we introduce an online feature alignment procedurederived from Batch Normalization. Second, we devise a meta-learning approach that exploits feature alignment forfaster convergence in an online learning setting. Additionally, we propose a meta-pre-training algorithm in order toobtain initial network weights on the source dataset whichfacilitate adaptation on future data streams. Experimentally, we show that both OMLA and meta-pre-training helpthe model to adapt faster to a new environment. Our proposal is evaluated on the wellestablished KITTI dataset,where we show that our online method is competitive withstate of the art algorithms trained in a batch setting.

View on arXiv
Comments on this paper