ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07936
21
15
v1v2v3v4 (latest)

Beyond Correlation: A Path-Invariant Measure for Seismogram Similarity

16 April 2019
Joshua T. Dickey
B. Borghetti
W. Junek
Richard K. Martin
ArXiv (abs)PDFHTML
Abstract

Similarity search is a popular technique for seismic signal processing, with template matching, matched filters and subspace detectors being utilized for a wide variety of tasks, including both signal detection and source discrimination. Traditionally, these techniques rely on the cross-correlation function as the basis for measuring similarity. Unfortunately, seismogram correlation is dominated by path effects, essentially requiring a distinct waveform template along each path of interest. To address this limitation, we propose a novel measure of seismogram similarity that is explicitly invariant to path. Using Earthscope's USArray experiment, a path-rich dataset of 207,291 regional seismograms across 8,452 unique events is constructed, and then employed via the batch-hard triplet loss function, to train a deep convolutional neural network which maps raw seismograms to a low dimensional embedding space, where nearness on the space corresponds to nearness of source function, regardless of path or recording instrumentation. This path-agnostic embedding space forms a new representation for seismograms, characterized by robust, source-specific features, which we show to be useful for performing both pairwise event association as well as template-based source discrimination with a single template.

View on arXiv
Comments on this paper