ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07172
48
1
v1v2v3 (latest)

Differentiable Iterative Surface Normal Estimation

15 April 2019
J. E. Lenssen
Christian Osendorfer
Jonathan Masci
    3DPC
ArXiv (abs)PDFHTML
Abstract

This paper presents an end-to-end differentiable algorithm for anisotropic surface normal estimation on unstructured point-clouds. We utilize graph neural networks to iteratively infer point weights for a plane fitting algorithm applied to local neighborhoods. The approach retains the interpretability and efficiency of traditional sequential plane fitting while benefiting from a data-dependent deep-learning parameterization. This results in a state-of-the-art surface normal estimator that is robust to noise, outliers and point density variation and that preserves sharp features through anisotropic kernels and a local spatial transformer. Contrary to previous deep learning methods, the proposed approach does not require any hand-crafted features while being faster and more parameter efficient.

View on arXiv
Comments on this paper