62
0

Black-Box Complexity of the Binary Value Function

Abstract

The binary value function, or BinVal, has appeared in several studies in theory of evolutionary computation as one of the extreme examples of linear pseudo-Boolean functions. Its unbiased black-box complexity was previously shown to be at most log2n+2\lceil \log_2 n \rceil + 2, where nn is the problem size. We augment it with an upper bound of log2n+2.42141558o(1)\log_2 n + 2.42141558 - o(1), which is more precise for many values of nn. We also present a lower bound of log2n+1.1186406o(1)\log_2 n + 1.1186406 - o(1). Additionally, we prove that BinVal is an easiest function among all unimodal pseudo-Boolean functions at least for unbiased algorithms.

View on arXiv
Comments on this paper