10
4

WeNet: Weighted Networks for Recurrent Network Architecture Search

Abstract

In recent years, there has been increasing demand for automatic architecture search in deep learning. Numerous approaches have been proposed and led to state-of-the-art results in various applications, including image classification and language modeling. In this paper, we propose a novel way of architecture search by means of weighted networks (WeNet), which consist of a number of networks, with each assigned a weight. These weights are updated with back-propagation to reflect the importance of different networks. Such weighted networks bear similarity to mixture of experts. We conduct experiments on Penn Treebank and WikiText-2. We show that the proposed WeNet can find recurrent architectures which result in state-of-the-art performance.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.