ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.03576
23
29
v1v2v3 (latest)

Spoken Language Intent Detection using Confusion2Vec

7 April 2019
Prashanth Gurunath Shivakumar
Mu Yang
P. Georgiou
ArXiv (abs)PDFHTML
Abstract

Decoding speaker's intent is a crucial part of spoken language understanding (SLU). The presence of noise or errors in the text transcriptions, in real life scenarios make the task more challenging. In this paper, we address the spoken language intent detection under noisy conditions imposed by automatic speech recognition (ASR) systems. We propose to employ confusion2vec word feature representation to compensate for the errors made by ASR and to increase the robustness of the SLU system. The confusion2vec, motivated from human speech production and perception, models acoustic relationships between words in addition to the semantic and syntactic relations of words in human language. We hypothesize that ASR often makes errors relating to acoustically similar words, and the confusion2vec with inherent model of acoustic relationships between words is able to compensate for the errors. We demonstrate through experiments on the ATIS benchmark dataset, the robustness of the proposed model to achieve state-of-the-art results under noisy ASR conditions. Our system reduces classification error rate (CER) by 20.84% and improves robustness by 37.48% (lower CER degradation) relative to the previous state-of-the-art going from clean to noisy transcripts. Improvements are also demonstrated when training the intent detection models on noisy transcripts.

View on arXiv
Comments on this paper