ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.00788
12
25

Neural Abstractive Text Summarization and Fake News Detection

24 March 2019
S. Esmaeilzadeh
Gao Xian Peh
Angela Xu
ArXivPDFHTML
Abstract

In this work, we study abstractive text summarization by exploring different models such as LSTM-encoder-decoder with attention, pointer-generator networks, coverage mechanisms, and transformers. Upon extensive and careful hyperparameter tuning we compare the proposed architectures against each other for the abstractive text summarization task. Finally, as an extension of our work, we apply our text summarization model as a feature extractor for a fake news detection task where the news articles prior to classification will be summarized and the results are compared against the classification using only the original news text. keywords: LSTM, encoder-deconder, abstractive text summarization, pointer-generator, coverage mechanism, transformers, fake news detection

View on arXiv
Comments on this paper