ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.00623
27
5

Constructing Hierarchical Q&A Datasets for Video Story Understanding

1 April 2019
Y. Heo
Kyoung-Woon On
Seong-Ho Choi
Jaeseo Lim
Jinah Kim
Jeh-Kwang Ryu
Byung-Chull Bae
Byoung-Tak Zhang
ArXivPDFHTML
Abstract

Video understanding is emerging as a new paradigm for studying human-like AI. Question-and-Answering (Q&A) is used as a general benchmark to measure the level of intelligence for video understanding. While several previous studies have suggested datasets for video Q&A tasks, they did not really incorporate story-level understanding, resulting in highly-biased and lack of variance in degree of question difficulty. In this paper, we propose a hierarchical method for building Q&A datasets, i.e. hierarchical difficulty levels. We introduce three criteria for video story understanding, i.e. memory capacity, logical complexity, and DIKW (Data-Information-Knowledge-Wisdom) pyramid. We discuss how three-dimensional map constructed from these criteria can be used as a metric for evaluating the levels of intelligence relating to video story understanding.

View on arXiv
Comments on this paper