ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.00352
14
11

Fast and Full-Resolution Light Field Deblurring using a Deep Neural Network

31 March 2019
Jonathan Samuel Lumentut
Tae Hyun Kim
R. Ramamoorthi
I. Park
ArXivPDFHTML
Abstract

Restoring a sharp light field image from its blurry input has become essential due to the increasing popularity of parallax-based image processing. State-of-the-art blind light field deblurring methods suffer from several issues such as slow processing, reduced spatial size, and a limited motion blur model. In this work, we address these challenging problems by generating a complex blurry light field dataset and proposing a learning-based deblurring approach. In particular, we model the full 6-degree of freedom (6-DOF) light field camera motion, which is used to create the blurry dataset using a combination of real light fields captured with a Lytro Illum camera, and synthetic light field renderings of 3D scenes. Furthermore, we propose a light field deblurring network that is built with the capability of large receptive fields. We also introduce a simple strategy of angular sampling to train on the large-scale blurry light field effectively. We evaluate our method through both quantitative and qualitative measurements and demonstrate superior performance compared to the state-of-the-art method with a massive speedup in execution time. Our method is about 16K times faster than Srinivasan et. al. [22] and can deblur a full-resolution light field in less than 2 seconds.

View on arXiv
Comments on this paper