27
2

UVA: A Universal Variational Framework for Continuous Age Analysis

Abstract

Conventional methods for facial age analysis tend to utilize accurate age labels in a supervised way. However, existing age datasets lies in a limited range of ages, leading to a long-tailed distribution. To alleviate the problem, this paper proposes a Universal Variational Aging (UVA) framework to formulate facial age priors in a disentangling manner. Benefiting from the variational evidence lower bound, the facial images are encoded and disentangled into an age-irrelevant distribution and an age-related distribution in the latent space. A conditional introspective adversarial learning mechanism is introduced to boost the image quality. In this way, when manipulating the age-related distribution, UVA can achieve age translation with arbitrary ages. Further, by sampling noise from the age-irrelevant distribution, we can generate photorealistic facial images with a specific age. Moreover, given an input face image, the mean value of age-related distribution can be treated as an age estimator. These indicate that UVA can efficiently and accurately estimate the age-related distribution by a disentangling manner, even if the training dataset performs a long-tailed age distribution. UVA is the first attempt to achieve facial age analysis tasks, including age translation, age generation and age estimation, in a universal framework. The qualitative and quantitative experiments demonstrate the superiority of UVA on five popular datasets, including CACD2000, Morph, UTKFace, MegaAge-Asian and FG-NET.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.