ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.12392
6
2

Training a Neural Speech Waveform Model using Spectral Losses of Short-Time Fourier Transform and Continuous Wavelet Transform

29 March 2019
Shinji Takaki
Hirokazu Kameoka
Junichi Yamagishi
ArXivPDFHTML
Abstract

Recently, we proposed short-time Fourier transform (STFT)-based loss functions for training a neural speech waveform model. In this paper, we generalize the above framework and propose a training scheme for such models based on spectral amplitude and phase losses obtained by either STFT or continuous wavelet transform (CWT), or both of them. Since CWT is capable of having time and frequency resolutions different from those of STFT and is cable of considering those closer to human auditory scales, the proposed loss functions could provide complementary information on speech signals. Experimental results showed that it is possible to train a high-quality model by using the proposed CWT spectral loss and is as good as one using STFT-based loss.

View on arXiv
Comments on this paper