ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.11222
24
29

ner and pos when nothing is capitalized

27 March 2019
Stephen D. Mayhew
Tatiana Tsygankova
Dan Roth
ArXivPDFHTML
Abstract

For those languages which use it, capitalization is an important signal for the fundamental NLP tasks of Named Entity Recognition (NER) and Part of Speech (POS) tagging. In fact, it is such a strong signal that model performance on these tasks drops sharply in common lowercased scenarios, such as noisy web text or machine translation outputs. In this work, we perform a systematic analysis of solutions to this problem, modifying only the casing of the train or test data using lowercasing and truecasing methods. While prior work and first impressions might suggest training a caseless model, or using a truecaser at test time, we show that the most effective strategy is a concatenation of cased and lowercased training data, producing a single model with high performance on both cased and uncased text. As shown in our experiments, this result holds across tasks and input representations. Finally, we show that our proposed solution gives an 8% F1 improvement in mention detection on noisy out-of-domain Twitter data.

View on arXiv
Comments on this paper