ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.11024
22
31

Deep Learning and Word Embeddings for Tweet Classification for Crisis Response

26 March 2019
Reem AlRashdi
Simon E. M. O'Keefe
ArXivPDFHTML
Abstract

Tradition tweet classification models for crisis response focus on convolutional layers and domain-specific word embeddings. In this paper, we study the application of different neural networks with general-purpose and domain-specific word embeddings to investigate their ability to improve the performance of tweet classification models. We evaluate four tweet classification models on CrisisNLP dataset and obtain comparable results which indicates that general-purpose word embedding such as GloVe can be used instead of domain-specific word embedding especially with Bi-LSTM where results reported the highest performance of 62.04% F1 score.

View on arXiv
Comments on this paper