30
36

A Tight Runtime Analysis for the cGA on Jump Functions---EDAs Can Cross Fitness Valleys at No Extra Cost

Abstract

We prove that the compact genetic algorithm (cGA) with hypothetical population size μ=Ω(nlogn)poly(n)\mu = \Omega(\sqrt n \log n) \cap \text{poly}(n) with high probability finds the optimum of any nn-dimensional jump function with jump size k<120lnnk < \frac 1 {20} \ln n in O(μn)O(\mu \sqrt n) iterations. Since it is known that the cGA with high probability needs at least Ω(μn+nlogn)\Omega(\mu \sqrt n + n \log n) iterations to optimize the unimodal OneMax function, our result shows that the cGA in contrast to most classic evolutionary algorithms here is able to cross moderate-sized valleys of low fitness at no extra cost. Our runtime guarantee improves over the recent upper bound O(μn1.5logn)O(\mu n^{1.5} \log n) valid for μ=Ω(n3.5+ε)\mu = \Omega(n^{3.5+\varepsilon}) of Hasen\"ohrl and Sutton (GECCO 2018). For the best choice of the hypothetical population size, this result gives a runtime guarantee of O(n5+ε)O(n^{5+\varepsilon}), whereas ours gives O(nlogn)O(n \log n). We also provide a simple general method based on parallel runs that, under mild conditions, (i)~overcomes the need to specify a suitable population size, but gives a performance close to the one stemming from the best-possible population size, and (ii)~transforms EDAs with high-probability performance guarantees into EDAs with similar bounds on the expected runtime.

View on arXiv
Comments on this paper