ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.09800
20
78

Coin.AI: A Proof-of-Useful-Work Scheme for Blockchain-based Distributed Deep Learning

23 March 2019
Alejandro Baldominos Gómez
Y. Sáez
ArXivPDFHTML
Abstract

One decade ago, Bitcoin was introduced, becoming the first cryptocurrency and establishing the concept of "blockchain" as a distributed ledger. As of today, there are many different implementations of cryptocurrencies working over a blockchain, with different approaches and philosophies. However, many of them share one common feature: they require proof-of-work to support the generation of blocks (mining) and, eventually, the generation of money. This proof-of-work scheme often consists in the resolution of a cryptography problem, most commonly breaking a hash value, which can only be achieved through brute-force. The main drawback of proof-of-work is that it requires ridiculously large amounts of energy which do not have any useful outcome beyond supporting the currency. In this paper, we present a theoretical proposal that introduces a proof-of-useful-work scheme to support a cryptocurrency running over a blockchain, which we named Coin.AI. In this system, the mining scheme requires training deep learning models, and a block is only mined when the performance of such model exceeds a threshold. The distributed system allows for nodes to verify the models delivered by miners in an easy way (certainly much more efficiently than the mining process itself), determining when a block is to be generated. Additionally, this paper presents a proof-of-storage scheme for rewarding users that provide storage for the deep learning models, as well as a theoretical dissertation on how the mechanics of the system could be articulated with the ultimate goal of democratizing access to artificial intelligence.

View on arXiv
Comments on this paper