ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.09003
8
4

Variational Bayesian modelling of mixed-effects

21 March 2019
J. Daunizeau
ArXiv (abs)PDFHTML
Abstract

This note is concerned with an accurate and computationally efficient variational bayesian treatment of mixed-effects modelling. We focus on group studies, i.e. empirical studies that report multiple measurements acquired in multiple subjects. When approached from a bayesian perspective, such mixed-effects models typically rely upon a hierarchical generative model of the data, whereby both within- and between-subject effects contribute to the overall observed variance. The ensuing VB scheme can be used to assess statistical significance at the group level and/or to capture inter-individual differences. Alternatively, it can be seen as an adaptive regularization procedure, which iteratively learns the corresponding within-subject priors from estimates of the group distribution of effects of interest (cf. so-called "empirical bayes" approaches). We outline the mathematical derivation of the ensuing VB scheme, whose open-source implementation is available as part the VBA toolbox.

View on arXiv
Comments on this paper