ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.07360
11
0

IvaNet: Learning to jointly detect and segment objets with the help of Local Top-Down Modules

18 March 2019
Shihua Huang
Lu Wang
    SSeg
ArXivPDFHTML
Abstract

Driven by Convolutional Neural Networks, object detection and semantic segmentation have gained significant improvements. However, existing methods on the basis of a full top-down module have limited robustness in handling those two tasks simultaneously. To this end, we present a joint multi-task framework, termed IvaNet. Different from existing methods, our IvaNet backwards abstract semantic information from higher layers to augment lower layers using local top-down modules. The comparisons against some counterparts on the PASCAL VOC and MS COCO datasets demonstrate the functionality of IvaNet.

View on arXiv
Comments on this paper