ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.06353
19
41

Formality Style Transfer with Hybrid Textual Annotations

15 March 2019
Ruochen Xu
Tao Ge
Furu Wei
ArXivPDFHTML
Abstract

Formality style transformation is the task of modifying the formality of a given sentence without changing its content. Its challenge is the lack of large-scale sentence-aligned parallel data. In this paper, we propose an omnivorous model that takes parallel data and formality-classified data jointly to alleviate the data sparsity issue. We empirically demonstrate the effectiveness of our approach by achieving the state-of-art performance on a recently proposed benchmark dataset of formality transfer. Furthermore, our model can be readily adapted to other unsupervised text style transfer tasks like unsupervised sentiment transfer and achieve competitive results on three widely recognized benchmarks.

View on arXiv
Comments on this paper