ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.04120
26
94

HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs

11 March 2019
Pravendra Singh
Vinay Kumar Verma
Piyush Rai
Vinay P. Namboodiri
ArXivPDFHTML
Abstract

We present a novel deep learning architecture in which the convolution operation leverages heterogeneous kernels. The proposed HetConv (Heterogeneous Kernel-Based Convolution) reduces the computation (FLOPs) and the number of parameters as compared to standard convolution operation while still maintaining representational efficiency. To show the effectiveness of our proposed convolution, we present extensive experimental results on the standard convolutional neural network (CNN) architectures such as VGG \cite{vgg2014very} and ResNet \cite{resnet}. We find that after replacing the standard convolutional filters in these architectures with our proposed HetConv filters, we achieve 3X to 8X FLOPs based improvement in speed while still maintaining (and sometimes improving) the accuracy. We also compare our proposed convolutions with group/depth wise convolutions and show that it achieves more FLOPs reduction with significantly higher accuracy.

View on arXiv
Comments on this paper