ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.03216
6
7

Learning Hierarchical Teaching Policies for Cooperative Agents

7 March 2019
Dong-Ki Kim
Miao Liu
Shayegan Omidshafiei
Sebastian Lopez-Cot
Matthew D Riemer
Golnaz Habibi
Gerald Tesauro
Sami Mourad
Murray Campbell
Jonathan P. How
ArXivPDFHTML
Abstract

Collective learning can be greatly enhanced when agents effectively exchange knowledge with their peers. In particular, recent work studying agents that learn to teach other teammates has demonstrated that action advising accelerates team-wide learning. However, the prior work has simplified the learning of advising policies by using simple function approximations and only considered advising with primitive (low-level) actions, limiting the scalability of learning and teaching to complex domains. This paper introduces a novel learning-to-teach framework, called hierarchical multiagent teaching (HMAT), that improves scalability to complex environments by using the deep representation for student policies and by advising with more expressive extended action sequences over multiple levels of temporal abstraction. Our empirical evaluations demonstrate that HMAT improves team-wide learning progress in large, complex domains where previous approaches fail. HMAT also learns teaching policies that can effectively transfer knowledge to different teammates with knowledge of different tasks, even when the teammates have heterogeneous action spaces.

View on arXiv
Comments on this paper