91
25

A Rank-1 Sketch for Matrix Multiplicative Weights

Abstract

We show that a simple randomized sketch of the matrix multiplicative weight (MMW) update enjoys the same regret bounds as MMW, up to a small constant factor. Unlike MMW, where every step requires full matrix exponentiation, our steps require only a single product of the form eAbe^A b, which the Lanczos method approximates efficiently. Our key technique is to view the sketch as a randomized mirror projection, and perform mirror descent analysis on the expected projection. Our sketch solves the online eigenvector problem, improving the best known complexity bounds. We also apply this sketch to a simple no-regret scheme for semidefinite programming in saddle-point form, where it matches the best known guarantees.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.