ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.02460
19
551

A Survey of Network-based Intrusion Detection Data Sets

6 March 2019
Markus Ring
Sarah Wunderlich
Deniz Scheuring
Dieter Landes
Andreas Hotho
ArXivPDFHTML
Abstract

Labeled data sets are necessary to train and evaluate anomaly-based network intrusion detection systems. This work provides a focused literature survey of data sets for network-based intrusion detection and describes the underlying packet- and flow-based network data in detail. The paper identifies 15 different properties to assess the suitability of individual data sets for specific evaluation scenarios. These properties cover a wide range of criteria and are grouped into five categories such as data volume or recording environment for offering a structured search. Based on these properties, a comprehensive overview of existing data sets is given. This overview also highlights the peculiarities of each data set. Furthermore, this work briefly touches upon other sources for network-based data such as traffic generators and traffic repositories. Finally, we discuss our observations and provide some recommendations for the use and creation of network-based data sets.

View on arXiv
Comments on this paper