ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.02063
39
14
v1v2 (latest)

PatchNet: A Tool for Deep Patch Classification

16 February 2019
Thong Hoang
J. Lawall
R. J. Oentaryo
Yuan Tian
David Lo
ArXiv (abs)PDFHTMLGithub (26★)
Abstract

This work proposes PatchNet, an automated tool based on hierarchical deep learning for classifying patches by extracting features from commit messages and code changes. PatchNet contains a deep hierarchical structure that mirrors the hierarchical and sequential structure of a code change, differentiating it from the existing deep learning models on source code. PatchNet provides several options allowing users to select parameters for the training process. The tool has been validated in the context of automatic identification of stable-relevant patches in the Linux kernel and is potentially applicable to automate other software engineering tasks that can be formulated as patch classification problems. A video demonstrating PatchNet is available at https://goo.gl/CZjG6X. The PatchNet implementation is available at https://github.com/hvdthong/PatchNetTool.

View on arXiv
Comments on this paper