ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.01531
22
23

Ternary Hybrid Neural-Tree Networks for Highly Constrained IoT Applications

4 March 2019
Dibakar Gope
Ganesh S. Dasika
Matthew Mattina
ArXivPDFHTML
Abstract

Machine learning-based applications are increasingly prevalent in IoT devices. The power and storage constraints of these devices make it particularly challenging to run modern neural networks, limiting the number of new applications that can be deployed on an IoT system. A number of compression techniques have been proposed, each with its own trade-offs. We propose a hybrid network which combines the strengths of current neural- and tree-based learning techniques in conjunction with ternary quantization, and show a detailed analysis of the associated model design space. Using this hybrid model we obtained a 11.1% reduction in the number of computations, a 52.2% reduction in the model size, and a 30.6% reduction in the overall memory footprint over a state-of-the-art keyword-spotting neural network, with negligible loss in accuracy.

View on arXiv
Comments on this paper