ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00943
18
55

Structural Supervision Improves Learning of Non-Local Grammatical Dependencies

3 March 2019
Ethan Gotlieb Wilcox
Peng Qian
Richard Futrell
Miguel Ballesteros
R. Levy
ArXivPDFHTML
Abstract

State-of-the-art LSTM language models trained on large corpora learn sequential contingencies in impressive detail and have been shown to acquire a number of non-local grammatical dependencies with some success. Here we investigate whether supervision with hierarchical structure enhances learning of a range of grammatical dependencies, a question that has previously been addressed only for subject-verb agreement. Using controlled experimental methods from psycholinguistics, we compare the performance of word-based LSTM models versus two models that represent hierarchical structure and deploy it in left-to-right processing: Recurrent Neural Network Grammars (RNNGs) (Dyer et al., 2016) and a incrementalized version of the Parsing-as-Language-Modeling configuration from Chariak et al., (2016). Models are tested on a diverse range of configurations for two classes of non-local grammatical dependencies in English---Negative Polarity licensing and Filler--Gap Dependencies. Using the same training data across models, we find that structurally-supervised models outperform the LSTM, with the RNNG demonstrating best results on both types of grammatical dependencies and even learning many of the Island Constraints on the filler--gap dependency. Structural supervision thus provides data efficiency advantages over purely string-based training of neural language models in acquiring human-like generalizations about non-local grammatical dependencies.

View on arXiv
Comments on this paper